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Abstract--A simple mechanistic model is developed based on the combination of Kelvin-Helmholtz and 
Rayleigh-Taylor instability theory to describe the breakup of freely rising or falling fluid particles, i.e. 
bubbles and drops. The breakup is predicted to occur if the growth rate of interfacial waves on the leading 
front is faster than the rate at which waves propagate around the interface to the side of the particle. Based 
on this theoretical model and available experimental data, simple correlations are developed to predict 
the maximum size a fluid particle can reach. Predicted values of the breakup diameter are compared with 
experimental "data for cases of freely rising bubbles, falling drops in gas and freely falling or rising drops 
in immiscible liquids. The results are extended to predict the maximum droplet size in a high-velocity gas 
field which is the most interesting case in terms of practical applications. Good agreement between 
predicted values and experimental data indicates that the principal mechanisms involved in the fluid 
particle breakup process are properly accounted for by the proposed model. 
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INTRODUCTION 

Breakup size of fluid particles, bubbles and drops, in dispersed two-phase flow systems including 
the liquid-liquid particulate systems is an important factor in determining the fluid particle size 
distribution and, hence, the effectiveness of the interfacial transport of mass, momentum and 
energy. A knowledge of disintegration of bubbles and drops is essential to the eventual 
understanding of the interfacial transfer mechanisms and two-phase flow-pattern transitions in a 
large number of engineering applications. These include: gas-liquid droplet systems, such as 
atomizers, dryers, absorbers, wet steam separators and cryogenic heat exchangers: liquid-liquid 
droplet systems, such as liquid-liquid extractors, separators used with distillation columns and 
packed towers when the packing is not wetted by the dispersed phase; and finally, liquid-gas (or 
vapor-bubbly) systems, such as boiling water and pressurized boiling water reactors, boilers, flash 
distillation and aeration units, etc. Although drops and bubbles seldom occur in isolation in such 
systems, it is essential to understand the behavior of a single fluid particle before a full knowledge 
of interacting bubbles and drops can be achieved. 

For the purpose of providing basic information on the maximum size a fluid particle can reach, 
a number of processes which may cause breakup of fluid particles have been identified in the 
literature. The most important breakup mechanisms are classified as rapid accelerations (Hinze 
1955), high shear stresses (Taylor 1934) and turbulent fluctuations (Sleicher 1962). 

In the foregoing breakup mechanisms, disturbances which cause fluid particle splitting are due 
to rapid acceleration, high shear stresses and turbulent fluctuations in the continuous surrounding 
fluids. It has been observed that even when no such external disturbance is present, there is a limit 
to the size to which bubbles and drops can reach. The maximum size attained by a single bubble 
or drop rising or falling freely through stagnant media in the absence of such disturbances has been 
attributed to Rayleigh-Taylor instability. This type of breakup mechanism was first considered by 
Komaboyashi et al. (1964) to determine the maximum size of falling drops in air. This theory has 
been extended over the years by Blanchard (1962), Cotton & Gokhale (1967). Klett (1971), 
Hendricksen & Ostergaard (1974) and Grace and co-workers (Clift & Grace 1973; Clift et al. 1974, 
1978). For example Grace et al. (1978) developed a semi-empirical relation to predict the maximum 
particle diameter in which a constant was correlated using existing experimental data. It was found 
that the data for bubbles requires a different constant, 3.8, than the data for liquid drops. For the 
latter case, the optimum value of the constant was found to be 1.4. 
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It is important to note that in this type of analysis the breakup criteria were based on the growth 
of the standing waves, i.e. Rayleigh-Taylor instability, where there is no relative velocity permitted 
between the particulate and continuous phases. However, in reality, even for the breakup in the 
stagnant media there exists a relative motion between particulate and continuous fluids, and the 
growth of disturbances generated at the interface depends on the magnitude of the relative velocity. 
Therefore, the use of the Rayleigh-Taylor instability analyses seems inconsistent in this case. This 
is particularly true for falling drops in a gaseous media where the relative velocity can be very high. 
It is natural to expect an effect of the relative velocity on the wave propagation and breakup 
processes. 

Kelvin-Helmholtz theory allows a relative motion between two superposed fluid layers. 
Disturbances generated by this instability propagate at the interface with a certain speed while they 
grow or decay. Furthermore, since the breakup of fluid particles proceeds from the advancing 
interfacial surface, i.e. from the upper surface for rising bubbles and drops from the lower surface 
for falling drops, it is natural to expect both the Kelvin-Helmholtz and Rayleigh-Taylor 
instabilities to become effective in the breakup process. 

In veiw of the above discussion, this study has three objectives. Based on the combination of 
Kelvin-Helmholtz and Rayleigh-Taylor instability theories, the first objective is to develop a 
unique method to describe the breakup of fluid particles. The method thus developed is unique 
in the sense that it can be used for predicting the breakup diameter of rising bubbles as well as 
falling or rising drops in a gas or in an immiscible different liquid. The second objective is to develop 
a series of simple correlations to determine the maximum size a fluid particle can reach. Finally, 
the third objective is to extend the theory to predict the maximum droplet size in a high-velocity 
gas stream, which is the most interesting case in terms of practical applications. This extension is 
possible since the mechanistic model developed here partly depends on the Kelvin-Helmholtz 
instability theory. 

BREAKUP ANALYSIS 

Modeling 
The stability of the two superposed incompressible, inviscid fluids to be considered here is 

illustrated in figure 1. The lower fluid is identified by subscript 1 and the upper fluid by 2. The 
fluids are flowing concurrently in a horizontal, constant area channel. The velocities of the two 
fluids are assumed to be horizontal in direction, and denoted by ui and u2, respectively. Assuming 
the perturbed flow is irrotational, and following the derivations of Chandrasekhar (1968), Lamb 
(1945) and Yih (1980), the speed of propagation c, and the growth factor kc~ can be expressed as 
follows: 

p~ coth(khl ) ul + P2 coth(kh2) u2 
C r ~--- [ l ]  

pi coth(kh~ ) + P2 coth(kh2) 

and 

fp, p2coth(kh,)coth(kh2) (urn- u~)2k 2 ak3-g_(p~_S P~)k l '/~ kq 
= ~ [Pl coth(kht ) + P2 coth(kh2)]: [Pt coth(khl ) + P2 coth(kh2)]J " [2] 

where, as illustrated in figure 1, h~and h2 represent the fluid thickness of the lower and upper fluids, 
respectively, and k is the wavenumber, k = 2n/1. In deriving this equation, it was assumedthat  

'T 

////////////////////////I" / / / / / //////I" ///// 

T Fluid 2 U2p 
~ Cr 

Figure 1. Stability of two superimposed fluids flowing concurrently in a constant cross-sectional area 
channel. 
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the interfacial perturbation is periodic in x. Thus, 

rl = rh exp[ik(x - ct)], [3] 

where q~ is the perturbation amplitude at the interface, and c is the complex wave celerity defined 
a s  

c = cr + ici. [4] 

The growth factor, kq, determines the degree of amplification or damping. The interfacial 
disturbances are damped if kq < 0 and the mean flow configuration is stable, the disturbances are 
amplified if kq > 0, and the mean flow is unstable. Finally, the mean flow is said to be neutrally 
stable if kq = O. 

For the purpose of using the plane flow Kelvin-Helmholtz theory summarized above to describe 
the breakup of fluid particles, we now consider a cap bubble rising in a liquid, as illustrated in figure 
2. Here a cap bubble is chosen for the purpose of reference. The present theory will be equally 
applicable to rising or falling drops with spherical or ellipsoidal shapes. Identifying the continuous 
and dispersed fluids by subscripts c and d, respectively, the plane flow stability results summarized 
by [1] and [2] can be adopted for the cap bubble case as follows: 

3 p~ uc sin 0 
cr = ~ Pc + Pd coth(khd) [5] 

and 

= ~PcPd coth(khd)k2(L5Uc sin 0) 5 o.k 3 _ g iA p ik .~1/2 

kq  [ [Pc + Pd coth(khd)] Pc + Pd coth(khd)J " [6] 

In arriving at [5] and [6] from [1] and [2], respectively, the following approximations are introduced: 

(a) The effects of viscosity in both dispersed and continuous fluids are neglected. 
Hence, the breakup criteria will not be expected to hold for extremely viscous 
fluids. 

(b) The breakup of fluid particles proceeds from the advancing interfacial surface, 
i.e. from the upper surface for rising bubbles and drops and from the lower 
surface for falling drops, which is in agreement with most experimental 
observations (Grace et al., 1978). Hence it is assumed here that it will always be 
the advancing interface of a moving particle that is prone to instability. In view 
of this assumption, Ul and us in [1] and [2] are interpreted as the tangential 
velocity components, Ude and uc0, respectively. 

(c) The effect of advancing front curvature is neglected except insofar as it 
determines the value of the tangential velocity component. It can be argued that 

Uc9 

~-~ ~Ow Rph~~/2 
i 

Figure 2. Schematic illustration of flow around a rising cap bubble. 
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such an effect is of minor consequence for drops and bubbles which are 
sufficiently large for breakup to be a factor. 

(d) The circulation within the fluid particle is neglected. This implies the presence 
of enough surface-active contaminants and a sufficient surface-active con- 
taminant concentration gradient to damp out the internal circulation. Systems 
which exhibit high surface tension, including common fluid pairs like air-water, 
liquid metals-air and aqueous liquid-nonpolar liquids, are subject to these 
effects. In view of these assumptions and using the potential flow theory for flow 
around a spherical particle, Uco and Udo are approximated by 

U2 ~ UC 0 = 3 UC sin O; u l-'~ Udo "~ O. [7] 

(e) It is noted that the surrounding fluid dimension is much larger than the particle 
size. Thus, h2- -*h¢~ ,  and for large amounts coth(khc) is approximated by 

coth(khc) - 1.0. [8] 

It is evident from [5] and [6] that the speed of propagation as well as the growth factor depend 
upon the local angular position, original disturbance location and the dispersed phase fluid 
thickness at the origination of the disturbances. Referring to figure 2, it can be shown that hd is 
given by the following equation: 

h d = - ~  ( c o s  0 o - c o s  0co ). [9] 

Here dp is given in terms of the mean radius of curvature, dp= 2Rp; and 0o describes the angular 
position at which the disturbances originate. 

Equation [6] represents the growth factor of the combined Kelvin-Helmholtz and 
Rayleigh-Taylor instabilities as applied to a rising cap bubble. It should be emphasized here that 
the above stability criterion represents only the first step in developing a correlation for the breakup 
of a fluid-particle interface. This information simply indicates when these interfacial waves occur 
and what their growth rates are. However, the appearance of the wave on the interface does not 
necessarily imply that it leads to drastic changes at the interface such as the breakup of particles. 
To answer this question of whether the waves can lead to a breakup or not, it is necessary to know 
the time required for these waves to grow to a certain amplitude so that splitting eventually can 
o c c u r .  

Breakup mechanism 

A mathematical model is proposed here to predict the point at which breakup will be attained 
under given conditions. If  t~ denotes the growth time at which the instability at the interface lead 
to a breakup, tg can be calculated from the assumed wave form given by [3]. Thus, 

1 
tg "~ ~c i . [10] 

For the purpose of convenience a proportionality factor, Cg, may be introduced as follows: 

t=Cg 
g kci and tg = C~t'g, [11] 

where t'~ = 1/kci. In view of [6], t~ can be expressed as 

(.pepdCOth(khd) (1.5 uck sin 00) 2 _ a k 3 - - g l A p l k  ~-,/2 [12] 
t~ ( [Pc + Pd coth(khd)] 2 Pc + Pd coth(khd)J ' 

Disturbances originate near the top of the roof of a bubble and propagate down to the periphery 
with the local speed of propagation, cr. In practice a bubble does not split unless the disturbance 
had grown sufficiently before the tip of the growing spike reaches the side of  the bubble. If the 
wave travels to the end of a cap bubble or to the equator of a spherical particle without causing 
a breakup, it will be swept away at the edge into the continuous fluid. An estimate of the likelihood 
of splitting may be obtained by comparing the time required for a disturbance to grow with the 
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time available for the growth. If tp represents the propagation time, that is the time required for 
a disturbance to travel from its origination to the side of the bubble, tp can be calculated by 

tp=foo[(~__pe~)d 8 Fpo+p~coth(khd)] d [ [ t an (~) [  ] [13] 
=L- ~ A pin ] t a n ( ~ ) /  " 

/ - - . J  

where 8o is the angular position where the disturbances initiate. 
The likelihood of a breakup may now be assessed by comparing the values of t s and tp. The model 

proposed here postulates that fluid particles are likely to split if the time available for disturbances 
to grow (i.e. the propagation time, tp) is sufliciently large relative to the growth time, tg. 
Accordingly, a fluid particle tends to breakup due to a disturbance if 

t o >/tg or ~ >i C s with tg-  Cgt'g. [14] 
t g  

Combining [12] and [13] with [14], the breakup criterion may be expressed as 

t a n ( ~ )  

3p-~c j 4 In 
t a n ( ~ )  

PePd c°th(khd) (1.5 uck sin 8o) 2 ak 3 - g  lAp Ik ~/2 
x [pc+pdCOth(khd)] 2 - - p / ~ - ~ ~ ) j  ~>Cg. [15] 

The breakup criterion developed here is similar to that used previously by Grace 'et al. (1978). 
However, the approach moves away from previous analyses, which were largely base~l on 
Rayleigh-Taylor instability. Here disturbances generated at the interface grow much more rapidly 
due to the relative velocity, and the degree of instability affected by the relative motion between 
two phases. 

Assuming that the wake angle, 8~, the angular position of the initial disturbance, 80, the terminal 
velocity u~ and the amplitude ratio, C 8, are expressible in terms of the particle diameter and the 
wavenumber, basically there will be only two variables in [15], namely the wavenumber and the 
particle diameter. Then, once k is specified, dp can be calculated from [15]. The evaluation of these 
parameters is discussed below. 

Wake angle, 8~ 
Large fluid particles which are prone to splitting have been studied in some detail previously, 

and several transition criteria for fluid particle shape regimes have been proposed by Clift et al. 
(1978). When these studies are compared with available experimental data it is seen that drops 
falling in gases and drops falling or rising in another liquid never reach the spherical-cap particle 
regime. However, very large bubbles, in the order of centimeters, and most bubbles at the breakup 
point attain the spherical-cap shape. 

Attempts to predict wake angles theoretically for spherical-caps have met with only limited 
success (Moore 1959; Rippin & Davidson 1967). Based on experimental observations Clift et ai. 
0978) recommended the following empirical equation for bubbles: 

= Rec ), [161 8~, 50 + 190exp(-0.62 o4 

where 8o, is expressed in degrees and Re0 - p~u~de/#c is the continuous phase Reynolds number. In 
the present analysis [16] is used for bubbles, and 8~ - 90 ° is used for liquid droplets falling or rising 
in another fluid. 

Angular position of initial disturbance generation, 8o 
From [13] it is evident that disturbances which originated at the axis of symmetry, i.e. at 8o --0, 

would never reach the side of the cap bubble or the equator of spherical particles. They are purely 
standing waves in nature. Observations of splitting bubble experiments performed by Clift et al. 
(1974) indicated that disturbances usually develop in a regular pattern on either side of the leading 
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nose. Clift et al. suggested that the bubble is a node when the initial disturbance originates, then, 

2 7r 
Oo = 2dp = kdp" [17 ]  

Consistent with Clift et al.'s suggestion, [17] will be used throughout the analysis. 

Terminal velocity, u, 

There is a substantial body of data in the literature on the terminal velocity of a single bubble 
or drop. From these data many correlations for calculating the velocity, uc, have been developed 
(Hu & Kintner 1985; Klee & Treyball 1956; Mendelson 1967; Marruici et al. 1970; Wallis 1974; 
Grace et al. 1976). Similar studies have also been carried out for multiparticle systems by Ishii & 
Zuber (1979). The terminal velocity correlations were reviewed in detail by Grace et al. (1976). 
Here, the correlations recommended by Grace et al. are used. These are summarized below. 

(1) For large bubbles rising through a liquid, 

(2) For drops falling through a gas, 

uc=2.0(g lApla) ' /4  
p2 [19] 

(3) For drops rising or falling through a liquid, 

uc = 0.5 ~ [(F 2 + 2Ar) '/2 - F], [201 

where Ar is the Archimedes number. It is defined as 

Ar -= g lap [pcd~ /~ [21 ]  

and the parameter F is defined as 

F =- \ # o / /  

0 +:). 
In the above expressions de is the volume equivalent diameter. As in the case of the empirical 

correlations documented above, in most drop or bubble experiments, data are tabulated in terms 
of the volume equivalent diameter, de, rather than the mean curvature diameter or the particle 
diameter, dp. Therefore, it is desirable to express the equations in terms of de. A relation may be 
given in the form 

= . [ 2 2 1  tip = Cede with Ce 1 - cos 00,)2(2 + cos 0o~ 

Once 0,~, 0o and uc are determined in terms o f k  and dp (or d~) it is evident from [15] that in order 
to arrive at a predictive criterion for dp, one still needs to know k and Cg. 

Wavenumber, k 

The interface between the dispersed and continuous phases is unstable only for kq >>. O. In view 
of [6] the neutral stability condition can be expressed as 

Pa coth(khd) (1.5 uc sin 0 o)2k ak 2 _ g [Ap [ 
t> 0. [23] 

Pc + Pa coth(kha) Pc 

The wavenumber determined from this condition sets an upper limit on wavenumbers which need 
to be considered. The leading surface of a bubble or drop may therefore become unstable if the 
wavenumber of a disturbance at the interface is less than a critical value, k < k , ,  where kc, is 
determined from [23]. Thus, km,x = kcr. 
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There is also an upper limit on the wavelength, 2, or a lower limit on the wavenumber, imposed 
by the fact that a disturbance, if 2 were too large, represents a gross deformation of the bubble 
or drop and not a perturbation of the leading interface (Grace et al. 1978). A reasonable upper 
limit corresponds to half the circumference of the fluid particle. Hence, for a cap bubble of wake 
angle 0=, the maximum wavelength becomes 

2re 2~ 
'~max = O~dp o r  kmi n ~ '~ma~ - -  Ocodp" [24] 

Equations [23] and [24], respectively, put a higher and a lower limit on the acceptable values of 
wavenumbers. Hence instability occurs for some k, such that 

2~ 
- -  ~< k ~ k=~. [25] 
0~d~ 

Breakup correlation 
Variations of t~ and t~, as calculated from [12] and [13], respectively, are illustrated in figures 

3-5 for some of the fluid pairs. It is to be noted that the experimental values of breakup diameter 
are used to construct these figures. These three sample figures represent the basic characteristics 
of other data available in open literature. For example, figure 3 represents the basic characteristics 
of bubbles, whereas the rest represent drops in gases and liquids. For convenience, the (tp/t'g) ratio 
is also given in these figures. 

It is interesting to note that tp is always greater than t~ in the acceptable range of wavenumbers, 
as given by [25], except in a very narrow range close to km~ = k~, where the growth factor, k=--*0, 
and, hence t~--*~, which makes the ratio (tp/t'~) approach zero. It is noted, however, that this range 
corresponds to very small wavelengths for which the linearized stability analysis is not expected 
to hold. Furthermore, it is to be noted that the minimum value of (tp/t's) which is required by [14] 
can only be achieved at the minimum value of the wavenumber. Although it is usual practice in 
linearized stability analysis to consider the wavenumber which causes the most unstable wave 
growth, determined by the root of d(kci/dk)= 0, the most unstable wave for liquid drops (as 

l o  0 ~ l o  

_ 
_ 

-- Gas/LiClU 
Grace at ± 

"~  - -  air/paraff 
de = 0,0e o .  

"I _ ) 

10 - -  "STABLE O0 
- 
- 
- 
- 
- 

- 

- 

10 .2 I L~¢ 10 "1 

10 k2in 10 2 km~a x 10 3 

• k ( l /m)  

Figure 3. Var ia t ion o f  growth time, ts, propagat ion times, tp, and time ratio, tp/t=, for a bubble at 
de = 0.063 m as a function of  wavenumbcr, k. 

MF 15/4--G 
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Figure 4. Variation of growth time, ts, propagation time, /p, and time ratio, tp/lg, for a drop in air at 
d e = 0.0088 m as a function of wavenumber, k. 

illustrated by figures 4 and 5) falls into the unacceptable wavenumber range expressed by [25]. In 
other words the most unstable wavenumber is so small that the corresponding wavelength, 
2 = 2n/k, becomes longer than one-half of the circumference. This implies a gross motion of the 
bubble or drop and not a perturbation of the leading interface. Such a disturbance is considered 
not to cause particle disintegration. Therefore, instead of the most unstable wave, we propose here 
to consider the wave which yields the minimum value of (tp/t'~), as required by [14]. 

Using the value k = km~, obtained from [24] and the 00 value calculated from [17], the breakup 
criterion may be expressed from [15] in dimensionless form as follows: 

2 25 2~ 2 
(I+P*)t/21n Itan(_~) { "  (0--~)(l+P~*p.)Sin2(-~) 

+We -~ Ced= --~ ~ >I 3C,, [261 

where d*, We and p* are the dimensionless particle diameter, Weber number and density ratio, 
respectively. They are defined as 

(glApld 2 ),/2, pdCOth(krninhd) d *=_ We =pcdeu~, p*= [271 
O" O" Pc 

where d*. We and p* are the dimensionless particle diameter, Weber number and density ratio, 
respectively. They are defined as 

( ),/2, pcdeu~ p, pdcoth(kminhd) d* - g lap I d 2 We = , - [27] 
E O" Pc 

The term (kmi, hd) appearing in [27] can be expressed from [9] and [17] in terms of 0o,. Thus, 

kmin hd = (~-~)sin ( -~  E) sin ( ~ ) .  [28] 

tan( ) 
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Figure 5. Variation of growth time, tg, propagation time, /p, and time ratio, tp/tg, for a drop in a liquid 
at de = 0.0167 m as a function of wavenumber, k. 

It is evident from [26] that in order to arrive at a predictive criterion, one needs to know C s. 
In a linearized stability analysis, as is the case here, there exists no analytical way to predict the 
value of  Cg on a purely theoretical basis. It is necessary to resort to experiments. A reasonable 
approach is to correlate this term in terms of  basic variables affecting the breakup process. 

Observations on a large number of  figures, such as figures 3-5, regarding the numerical value 
of  (tv/t's) at k = kmm lead to the following conclusions: 

(1) For bubbles, (tp/t'~) is in the order of  unity. 
(2) For drops, (tp/t'~)~ (1 + p.)m with m being in the order of 0.5 at k = kmin. 

Since for bubbles 1 + p*-~ 1, these observations lead to the conclusion that at k = kmi,, 
C~_(1 + p.)t/ : .  

Considering the magnitude of  the variations in the dimensionless density ratio group from 
bubbles to drops falling in gases, the emergence of  such a dimensionless group as a correlation 
parameter is not surprising. Furthermore, noting that viscous effects were completely neglected in 
the present analysis, it is reasonable to use another correlation parameter representative of the 
viscous effects. A correlation in the following form is sought: 

C,. ),/2 = f  (P *, N#¢), [291 
( l + p  

where N#c is the viscosity number of the continuous phase. It is defined as 

Nj[,/c ~- ( 0.3 ~,/2 [30]  

c \g ap ) 

Using the substantial amount of data covering a wide range of  fluid properties the functional 
dependence of  C 8 on P* and N#c is determined by linear regression analysis. It is given by 

Cs = 0.348 (2  + 3p*'~ ''135 (1 + p.),/2 \ ~  ~ - ~ )  (1 + N # c )  °''a. [311 

In view of [31] the growth time predicted from [14] is also illustrated in figures 3-5. It may be 
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Figure 6. Comparison of  predicted breakup diameters with experimental data• 

observed from these figures that at k = kmin, tp / tg  "~ 1.0. Furthermore, using [31] in [26] the general 
breakup criterion becomes 

1 d, 2 2"25 (~-~)2 (1 + P - ~  *) sin2 (-~) + Wee [(~-~) Ce - (~-~) (~ )3  1 

1 .09/ /2+30y '27 I l t a n ( ~ )  t 2 t> \ l + p * ]  (1 + N/zc)°36 l l n  t an(~)  [32] 

Equation [32] can be used to predict the maximum fluid particle diameter at breakup. The 
breakup diameter suggested here is general in the sense that it is applicable for gas-liquid bubbly 
systems as well as liquid-liquid and liquid-gas droplet systems for relatively low viscosity fluids. 
It is important to note that the basic parameters affecting the breakup are N/A, We, p* and 0,o. 
Since 0~ depends on Rec by [19] it can be replaced by Re¢. The effects of these groups on d* will 
be explored in detail in the subsequent sections. 

COMPARISON BETWEEN THEORETICAL PREDICTIONS AND 
EXPERIMENTAL BREAKUP DATA 

Predicted values (de)m. x obtained from [32] are compared with experimental values in figure 6. 
The results include: the data of Hu & Kintner (1955), Krishna et al. (1959) and Grace et al. (1978) 
for liquid-liquid systems; the data of Merrington & Richardson (1947), Finlay (1957) and Ryan 
(1978) for liquid drops falling through gas; and, finally, the data of Grace et al. (1978) and Sundell 
(1978) for bubbles rising through a stagnant liquid. The conditions of their experiments are 
described in table 1. It is evident from table 1 that the experimental data covers a broad range of 
liquid-liquid, liquid-gas and gas-liquid systems. 
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Dispersed/continuous 
Reference fluids p* N/~c d~* 

Merrington Liquid/gas 884-1442 1.1 x 10-3-2.7 x 10 -3 3.73-4.63 
& Richardson (1947) 

Ryan (1978) Liquid/gas 953 1.6 x 10-3-3.5 x 10 -3 3.25-3.42 
Finlay (1957) Liquid/gas 767-2834 1.2 x 10-3-2.6 x 10 -3 2.67-4.32 
Krishna et  al. (1959) Liquid/liquid 1.15-3.32 1.4 x 10-3-6.7 x I0 -3 3.74-5.65 
Hu & Kintner (1955) Liquid/liquid 1.64-3.33 2.4 x 10-3-4.0 x 10 -3 3.50-4.38 
Grace e t  al. (1976) Liquid/liquid 0.75-1.36 3.8 x 10-2-6.9 4.06-37.06 
Grace et  al. (1978) Gas/liquid l0 -3-1.6 x l0 -3 4.5 x 10-2-2.6 19.27-36.95 
Sundell (1978) Gas/liquid 1.41 x 10 -3 2.3 x l0 -3 30.98 

The average deviation between the predicted and experimental values of (d,)m~ varies from about 
+5.80% for Ryan's data to +29.55% for the Grace et al. data, with an overall mean deviation 
of + 13.94%. Four of the systems studied by Hu & Kintner are similar to systems investigated by 
Krishna et al., while two of the Finlay systems are essentially identical to the Merrington & 
Richardson systems. However, the mean deviation changes drastically between the Hu & Kintner 
and Krishna et al. data and between the Merrington & Richardson and Finlay data. Although there 
are some differences in the reported values of the fluid properties, a significant part of the 
discrepancy between predictions and theory arises from experimental scatter or bias. 

Relatively high disagreements between the predicted and the Grace et al. data for liquid-liquid 
systems can be attributed to the viscosity effects of the continuous fluid. Although a viscosity 
correction has been made in the final correlation it is not expected that the correlation would be 
good for very viscous fluids. The experiments of Grace et al. cover a dynamic viscosity range of 
0.0124-3.08 Ns/m. If this set of data, V in figure 6, is excluded from the comparison the overall 
mean deviation decreases drastically. 

Taking the experimental scatter and the very viscous fluids used for some experiments into 
consideration and, furthermore, recalling the approximate nature of the theory developed here, the 
agreement between the theoretical predictions and the experimental results is favorably good. The 
overall mean deviation between the predicted and experimental values of (de)m~ is ___ 13.94%. The 
agreement with the experimental results indicates that the principal physical mechanisms involved 
are properly accounted for. 

P R A C T I C A L  B R E A K U P  C O R R E L A T I O N S  

It is to be noted that the general breakup correlation developed above is not closed in the sense 
that it requires an iteration process to obtain the maximum fluid particle size. This may hinder its 
practical use. For practical applications the general criterion may be simplified for falling drops 
in gases, drops in a high relative velocity field, rising bubbles and falling or rising drops in liquids. 

Freely falling drops in gaseous media 

As discussed above 0~ = n/2 for drops, and Ce = 1. Noting that p* >> 1 and N#c << 1 for this case, 
the breakup criterion can be simplified for practical purposes. It may be shown that the criterion 
becomes 

d* + 0.26We - 16 = 0. [33] 

With the terminal velocity given by [19], We can be expressed in terms of d*. Thus, 

We = 4d*. [34] 

In view of [34], [33] yields a very simple expression for d*, as follows: 

d* - 3.52. [35] 

It is interesting to note that when the slight effects of p* and N/ac are neglected and newly found 
breakup criterion reduces to the classical We criterion as 

We = 4d* = 14.08. [36] 
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In the case of a falling drop, the classical We criterion, as suggested by Hinze (1955), Sevik & 
Park (1973) and Haas (1964), is given by We --- 22. This yields somewhat larger de* values than those 
predicted from [35] or [36]. However, as can be observed from figure 6, a comparison of the present 
predictions with available experimental data indicate a very good agreement with the data of 
Merrington & Richardson (1947) and Ryan (1978) with a mean deviation of + 8.2%. Somewhat 
poor predictions may be seen with Finlay's (1957) four data points. Including Finlay's data the 
mean deviation is + 12.08. 

Before closing this section it is interesting to compare the Grace et al. (1978) method, which was 
based on the Rayleigh-Taylor instability analysis, with the same experimental data set used here. 
Based on the numerical predictions presented by Grace et al. (1978), the mean deviation from the 
experimental data of Merrington & Richardson (1947), Ryan (1978) and Finlay (1957) is in the 
order of + 31.85%. Comparison of this value with the present model mean deviation of + 12.08%, 
using the same data set, indicates the effects of relative velocity on the interfacial stability. Although 
the breakup models used here and by Grace et al. (1978) are similar in nature, inclusion of the 
relative velocity effects considerably improves the predictions. 

Drops in a high-velocity gas f ield 

In this case, again, 0o = rc/2, p * >> 1 and N#¢ << 1; however, u¢ is not uniquely expressed in terms 
of de. In order to de-couple We and d*, a modified We, Were, is defined as 

pcu~ We 
Were - (ag lap l) 1/2 - d* " [37] 

It may be shown from [33] that the criterion becomes 

d .2 + 0.26Wemd* - 4 = 0. [38] 

The breakup diameter for droplets in a high-velocity gas stream, as predicted by [38], is illustrated 
in figure 7. The predictions are also compared in the figure with those determined by the classical 
We criterion, We--- 12-17, and by the Kataoka et al. (1983) correlation. The latter, which was 
obtained in collaboration with a large amount of experimental air-water data from Wicks & Dukler 
(1966), Cousins & Hewitt (1968) and Lindsted et al. (1978), is given in its original form as 

/ o  \ - I i 3 /u  \213 
W e  = [39] 

where Recd is the continuous phase Reynolds number based on the hydraulic equivalent diameter 
of flow passage. For convenience Kataoka et al.'s correlation may be recast into the following form: 

/ d* "~2/3 
de* = 0.031 tN~fi /em ) [401 

where dg' and N#d, respectively, are the dimensionless hydraulic equivalent diameter of flow 
passage, dh* --= dh (g lAp I/a)~/:, and the dispersed phase viscosity number, N/g d ~-/gd/(P2c ~ 3/g lAp I)J/4. 
For the purpose of comparison, air-water properties at atmospheric conditions are used for 
evaluating N/~d and the hydraulic diameter is treated as a parameter in figure 7. 

It is important to note from figure 7 that as the hydraulic diameter increases predictions based 
on the data of Kataoka et al. (1983) approach the present model predictions in the general trend 
as well as numerical values. The agreement is remarkably good in relatively large flow channels. 
This is an expected result since the present model is based on the stability of a single particle in 
an infinite medium, neglecting the effects of surrounding particles and wall effects. On the other 
hand, the classical We criterion with the constant being 12 and 16, as shown in the figure, 
consistently underestimates the breakup diameter. Although general trends are similar to the 
present model, predictions of the We criterion are quite different from those obtained from the 
present model and the Kataoka et al. correlation. The classical We criterion and its predictions 
are discussed in more detail in Kataoka et al. (1983). 

In conclusion, the comparison with the experimental data based correlation of Kataoka et al. 
(1983) indicates that, indeed, the proposed breakup mechanism has been the dominant factor in 
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Figure 7. Breakup diameter correlation for drops in a high-velocity gas stream and comparison with other 
correlations. 

determining the maximum fluid particle size. An investigation is presently underway to improve 
the present model to take into account the effects of surrounding particles and wall effects. 

Rising bubbles in stagnant liquids 

In view of [18], We can be expressed as 

We = (~-~) d~ .2 • [41] 

Noting that p*<< 1 for bubbles, and using [41] in [32], the breakup criterion for bubbles becomes 

4 2n 4 1 2 

I 2 /2n\2 " 2:'0°'\ 
* +  0 . 5 ( ~ ) -  [0.584 (1 

where 0,~ is given as a function of Re, by [16]. 

  c°361fln I tan(-~)l ] 

tan(-~) J t 

Basically, it seems there are three independent variables, namely 0o,, p* and N#c, affecting d*. 
However, with the terminal velocity for large bubbles given by [18], Rec can be expressed as 

Re~ \~ , / \~ - /  \~--~,/ [43] 

This indicates that there are two independent variables rather than three. Furthermore, noting that 
the term containing p* is much smaller than the other two terms in [42], and in view of [41], it 
may be observed that d* =f(N/~,) only. Hence an even simpler correlation can be developed in 
this functional form. It may be shown that 

d* = 27.07(1 + N#,) °'83 [44] 

is a very good representation of [42] for the bubble breakup diameter. 
Equation [44] is very simple to use when compared to [42]. It is presented in figure 8 along with 

the Grace et al. (1978) data. The breakup diameter slightly increases as the continuous phase 
viscosity number increases. As demonstrated by Kocamustafaogullari (1985), this may be 
attributed to the smoothing effect of the interfacial shear on the growth of interfacial waves. 
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Figure 8. Breakup diameter correlation for bubbles and comparison with experimental observations. 

Unfortunately, the amount of experimental data available in the literature is very limited for this 
case--making it difficult to check the validity of [44] in more detail. 

Falling or rising drops in stagnant liquids 

Recalling that 0~ = n/2 for drops, the breakup criterion can be simplified to obtain 

d . 2 +  4.5 - 0 . 3 5 ~ ]  p g )  (1 +N#c)  °'36 W e -  16=0 .  [45] 

With the terminal velocity given by [20] and Ar defined by [21], We can be expressed as 

N#~ fF : [ de,3 "~ -it/2 t2. 
We = 0.25 ~ ~[_F + 2(~-~2 ) J - F~ [461 

It is important to note that as (Pd/gc) increases from 0 to ~ ,  Fvaries only from 6 to 9, indicating 
that the effect of the (#d/Pc) ratio on We is insignificant. Therefore, We can be approximated from 
[46] as follows: 

We ~- 0.5d *z. [47] 

In view of [47] the breakup criterion for drops in liquids can be further simplified resulting in the 
following expression for de*: 

d. 2 = 16 . [48] 
l +  0.5 ~4.5(i P ~ *  ,'~ - 0.35( 2 4"_ 3%*.'] z27 (1 + N#¢) 0''6 ] 

L \ l + p  ,/ \ l + p  2' 

This equation can be safely used for N/~¢ ~< 4 for predicting the breakup diameter of freely falling 
or rising liquid droplets in stagnant liquids. The influence of N/~c is illustrated in figure 9. The 

Figure 9. 

I o 
'D 

t 

10( 
I I 

0 

~7 

10"3 2 4 

l i  e J I I JI I 
Prseent Analyele ( p " = 1,2) 

Hu  & K ln t se r  ( p ° z 1,1S - 2.40) 

Krlahna ( p ' • 1 . 3 6 - 1 . 8 2 )  

Grace et al. ( p ' • 0.76 - 1.36) 

g? 
V 

V 

a 810.1 O 101 

N g  e 

I I 1[ I I_ 

V J ~  -- 

,J , 

Breakup diameter correlation for drops in liquids and comparison with experimental 
observations. 



BREAKUP CRITERIA FOR FLUID PARTICLES 587 

dimensionless breakup diameter slightly increases as the continuous phase viscosity number 
increases. This behavior is similar to the bubble breakup behavior, as illustrated in figure 8. 
Comparisons between predicted and experimental observations are good for low values of N#c, 
which is the case for most practical applications. However, when N#c >t 4, [45] is recommended with 
We expressed by [46]. 

SUMMARY AND CONCLUSIONS 

Based on the combination of Kelvin-Helmholtz and Rayleigh-Taylor stability theory, a simple 
mechanistic model is developed to describe the breakup of drops and bubbles falling or rising freely 
in a stagnant media. Breakup is predicted to occur if the growth of disturbances on the leading 
front is rapid enough relative to the rate at which the disturbance is propagated around the 
interface. In collaboration with a large number of experimental data for liquid-gas, liquid-liquid 
and gas-liquid systems, a general correlation is developed to predict the maximum stable particle 
size in a stagnant fluid. The results are extended to predict the maximum droplet size in a 
high-velocity gas field. Important dimensionless parameters affecting the breakup process are 
properly identified. They are Weber number, continuous phase viscosity number, density and 
viscosity ratio groups. For each case, the importance of these groups is assessed. 

Predicted values of the maximum particle size are compared with experimental data. An average 
deviation of ___ 13.94% between predicted and experimental values is observed. Considering the 
various simplifications made in the analysis the agreement is favorably good, and much better than 
that obtained from the Rayleigh-Taylor instability. 

For practical applications, the general breakup criterion is simplified for four separate cases, i.e. 
for freely falling drops in a gas, droplets in a high-velocity gas stream, freely rising bubbles and, 
finally, for freely falling or rising drops in liquids. Simple correlations are developed for each case. 
With the proper form of the terminal velocity it is demonstrated that the dimensionless breakup 
diameter can be expressed in terms of p*, Np~ and (#d/Pc). Depending on the bubbles or drops 
effective dimensionless groups can be further reduced as given by [35], [38], [44] and [48]. 

The theoretical model developed in this study is clearly approximate in nature, including such 
simplifications as the treatment of growth of three-dimensional disturbances on curved interfaces 
by means of two-dimensional, small-amplitude waves on a flat interface. Despite these approxi- 
mations, the agreement with experimental results indicates that the principal physical mechanisms 
involved are properly accounted for. 

Acknowledgement--The work reported in this paper was supported by a grant from the U.S. Department of 
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